Publication

A logarithmic-time solution to the point location problem for parametric linear programming

Colin Neil Jones
2006
Journal paper
Abstract

The optimiser of a (multi) parametric linear program (pLP) is a piecewise affine function defined over a polyhedral subdivision of the set of feasible states. Once this affine function has been pre-calculated, the optimal solution can be computed for a particular parameter by determining the region that contains it. This is the so-called point location problem. In this paper, we show that this problem can be written as an additively weighted nearest neighbour search that can be solved in time linear in the dimension of the state space and logarithmic in the number of regions. It is well-known that linear model predictive control (MPC) problems based on linear control objectives (e.g., 1- or -norm) can be posed as pLPs, and on-line calculation of the control law involves the solution to the point location problem. Several orders of magnitude sampling speed improvement are demonstrated over traditional MPC and closed-form MPC schemes using the proposed scheme.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.