Publication

Bayesian multiresponse calibration of TOPMODEL: Application to the Haute-Mentue catchment, Switzerland

André Musy
2010
Journal paper
Abstract

This paper introduces a general framework that evaluates a numerical Bayesian multiresponse calibration approach based on a Gibbs within Metropolis searching algorithm and a statistical likelihood function. The methodology has been applied with two versions of TOPMODEL on the Haute-Mentue experimental basin in Switzerland. The approach computes the following: the parameter's uncertainty, the parametric uncertainty of the output responses stemming from parameter uncertainty, and the predictive uncertainty of the output responses stemming from an error term including, indiscriminately in a lumped way, model structure and input and output errors. Two case studies are presented: The first one applies this methodology with the classical TOPMODEL to assess the role of two-response calibration (observed discharge and soil saturation deficits) on model parameters and output uncertainty. The second one uses a three-response calibration (observed discharge, silica, and calcium stream water concentrations) with a modified version of TOPMODEL to study the uncertainty of the parameters and of the simulated responses. Despite its limitations, the present multiresponse Bayesian approach proved a valuable tool in uncertainty analyses, and it contributed to a better understanding of the role of the internal variables and the value of additional information for enhancing model structure robustness and for checking the performance of conceptual models.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Uncertainty quantification
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known. An example would be to predict the acceleration of a human body in a head-on crash with another car: even if the speed was exactly known, small differences in the manufacturing of individual cars, how tightly every bolt has been tightened, etc.
Measurement uncertainty
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a measured quantity. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation. By international agreement, this uncertainty has a probabilistic basis and reflects incomplete knowledge of the quantity value. It is a non-negative parameter.
Propagation of uncertainty
In statistics, propagation of uncertainty (or propagation of error) is the effect of variables' uncertainties (or errors, more specifically random errors) on the uncertainty of a function based on them. When the variables are the values of experimental measurements they have uncertainties due to measurement limitations (e.g., instrument precision) which propagate due to the combination of variables in the function. The uncertainty u can be expressed in a number of ways. It may be defined by the absolute error Δx.
Show more
Related publications (46)

Design of an Open-Loop Pile-Oscillation Program in the CROCUS Reactor

Andreas Pautz, Vincent Pierre Lamirand, Thomas Jean-François Ligonnet, Axel Guy Marie Laureau

As a follow-up to the CEA-EPFL PETALE experimental program on stainless steel nuclear data, the EPFL initiated an open-loop pile-oscillation experimental program in the CROCUS reactor: BLOOM. A reproduction of the critical experiments of PETALE, the progra ...
2024

Computation of sensitivity coefficients in fixed source simulations with SERPENT2

Andreas Pautz, Mathieu Hursin

Within the scope of the implementation of a nuclear data pipeline aiming at producing the best possible evaluated nuclear data files, a major point is the production of relevant sensitivity coefficients when including integral benchmark information. Thanks ...
Lausanne2024

Limiting the impact of supply chain disruptions in the face of distributional uncertainty in demand

Ralf Seifert, Anna Timonina-Farkas, René Yves Glogg

Service-level requirements play a crucial role in eliminating stock-outs in a production pipeline. However, delivering a specific service level can become an unattainable goal given the various uncertainties influencing both the production pipeline and cus ...
WILEY2022
Show more
Related MOOCs (4)
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.