Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We propose a novel approach to reconstruct Hyperspectral images from very few number of noisy compressive measure- ments. Our reconstruction approach is based on a convex minimiza- tion which penalizes both the nuclear norm and the l2,1 mixed-norm of the data matrix. Thus, the solution tends to have a simultane- ously low-rank and joint-sparse structure. We explain how these two assumptions fit the Hyperspectral data, and by severals simulations we show that our proposed reconstruction scheme significantly enhances the state-of-the-art tradeoffs between the reconstruction error and the required number of CS measurements.
Oguzhan Fatih Kar, Can Deniz Bezek
Michaël Unser, Shayan Aziznejad, Thomas Jean Debarre