En statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives.
On parle aussi de modèle linéaire ou de modèle de régression linéaire.
Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
En général, le modèle de régression linéaire désigne un modèle dans lequel l'espérance conditionnelle de y connaissant x est une fonction affine des paramètres. Cependant, on peut aussi considérer des modèles dans lesquels c'est la médiane conditionnelle de y connaissant x ou n'importe quel quantile de la distribution de y connaissant x qui est une fonction affine des paramètres.
Le modèle de régression linéaire est souvent estimé par la méthode des moindres carrés mais il existe aussi de nombreuses autres méthodes pour estimer ce modèle. On peut par exemple estimer le modèle par maximum de vraisemblance ou encore par inférence bayésienne.
Bien qu'ils soient souvent présentés ensemble, le modèle linéaire et la méthode des moindres carrés ne désignent pas la même chose. Le modèle linéaire désigne une classe de modèles qui peuvent être estimés par un grand nombre de méthodes, et la méthode des moindres carrés désigne une méthode d'estimation. Elle peut être utilisée pour estimer différents types de modèles.
thumb|fig.01 - Régression linéaire effectuée sur les données de Francis Galton d'après l'exemple extrait du jeu de données Histdata pour R.
Ruđer Josip Bošković est le premier scientifique à calculer les coefficients de régression linéaire, en 1755-1757, quand il entreprit de mesurer la longueur de cinq méridiens terrestres en minimisant la somme des valeurs absolues.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le cours fournit une initiation à la théorie des probabilités et aux méthodes statistiques pour physiciens.
The course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.
Regression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
Le quartet d'Anscombe est constitué de quatre ensembles de données qui ont les mêmes propriétés statistiques simples mais qui sont en réalité très différents, ce qui se voit facilement lorsqu'on les représente sous forme de graphiques. Ils ont été construits en 1973 par le statisticien Francis Anscombe dans le but de démontrer l'importance de tracer des graphiques avant d'analyser des données, car cela permet notamment d'estimer l'incidence des données aberrantes sur les différentes indices statistiques que l'on pourrait calculer.
In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified. There is no innate underlying ordering of these outcomes, but numerical labels are often attached for convenience in describing the distribution, (e.g. 1 to K).
Une régression non linéaire consiste à ajuster un modèle, en général non linéaire, y = ƒa1, ..., am(x) pour un ensemble de valeurs (xi, yi)1 ≤ i ≤ n. Les variables xi et yi peuvent être des scalaires ou des vecteurs. Par « ajuster », il faut comprendre : déterminer les paramètres de la loi, (a1, ..., am), afin de minimiser S = ||ri||, avec : ri = yi - ƒa1, ..., am(xi). ||...|| est une norme. On utilise en général la norme euclidienne, ou norme l2 ; on parle alors de méthode des moindres carrés.
Explore l'application de l'apprentissage automatique aux systèmes à l'échelle atomique, en mettant l'accent sur la symétrie dans la cartographie des caractéristiques et la construction de descripteurs invariants en rotation.
Explore la régression linéaire à travers les moindres carrés et les équations normales, en soulignant l'importance de minimiser les erreurs pour des prédictions précises.
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
Herein, machine learning (ML) models using multiple linear regression (MLR), support vector regression (SVR), random forest (RF) and artificial neural network (ANN) are developed and compared to predict the output features viz. specific capacitance (Csp), ...