In this paper we show how interference can be exploited to perform gossip computations over a larger local neighborhood, rather than only pairs of nodes. We use a recently introduced technique called computation coding to perform reliable computation over noisy multiple access channels. Since many nodes can simultaneously average in a single round, neighborhood gossip clearly converges faster than nearest neighbor gossip. We characterize how many gossip rounds are required for a given neighborhood size. Also, we show that if the size of the collaboration neighborhood is larger than a critical value that depends on the path loss exponent and the network size, interference can yield exponential benefits in the energy required to compute the average.
Anton Schleiss, Mário Jorge Rodrigues Pereira Da Franca, Irene Almeida Samora