Summary
In numerical analysis, the order of convergence and the rate of convergence of a convergent sequence are quantities that represent how quickly the sequence approaches its limit. A sequence that converges to is said to have order of convergence and rate of convergence if The rate of convergence is also called the asymptotic error constant. Note that this terminology is not standardized and some authors will use rate where this article uses order (e.g., ). In practice, the rate and order of convergence provide useful insights when using iterative methods for calculating numerical approximations. If the order of convergence is higher, then typically fewer iterations are necessary to yield a useful approximation. Strictly speaking, however, the asymptotic behavior of a sequence does not give conclusive information about any finite part of the sequence. Similar concepts are used for discretization methods. The solution of the discretized problem converges to the solution of the continuous problem as the grid size goes to zero, and the speed of convergence is one of the factors of the efficiency of the method. However, the terminology, in this case, is different from the terminology for iterative methods. Series acceleration is a collection of techniques for improving the rate of convergence of a series discretization. Such acceleration is commonly accomplished with sequence transformations. Suppose that the sequence converges to the number . The sequence is said to converge with order to , and with a rate of convergence of , iffor some positive constant if , and if . It is not necessary, however, that be an integer. For example, the secant method, when converging to a regular, simple root, has an order of φ ≈ 1.618. Convergence with order is called linear convergence if , and the sequence is said to converge Q-linearly to . is called quadratic convergence. is called cubic convergence. etc. A practical method to calculate the order of convergence for a sequence is to calculate the following sequence, which converges to : In addition to the previously defined Q-linear convergence, a few other Q-convergence definitions exist.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.