Publication

Real-time input-constrained MPC using fast gradient methods

Colin Neil Jones
2009
Conference paper
Abstract

Linear quadratic model predictive control (MPC) with input constraints leads to an optimization problem that has to be solved at every instant in time. Although there exists computational complexity analysis for current online optimization methods dedicated to MPC, the worst case complexity bound is either hard to compute or far off from the practically observed bound. In this paper we introduce fast gradient methods that allow one to compute a priori the worst case bound required to find a solution with pre-specified accuracy. Both warm- and cold-starting techniques are analyzed and an illustrative example confirms that small, practical bounds can be obtained that together with the algorithmic and numerical simplicity of fast gradient methods allow online optimization at high rates.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.