Summary
In computational complexity theory, the average-case complexity of an algorithm is the amount of some computational resource (typically time) used by the algorithm, averaged over all possible inputs. It is frequently contrasted with worst-case complexity which considers the maximal complexity of the algorithm over all possible inputs. There are three primary motivations for studying average-case complexity. First, although some problems may be intractable in the worst-case, the inputs which elicit this behavior may rarely occur in practice, so the average-case complexity may be a more accurate measure of an algorithm's performance. Second, average-case complexity analysis provides tools and techniques to generate hard instances of problems which can be utilized in areas such as cryptography and derandomization. Third, average-case complexity allows discriminating the most efficient algorithm in practice among algorithms of equivalent best case complexity (for instance Quicksort). Average-case analysis requires a notion of an "average" input to an algorithm, which leads to the problem of devising a probability distribution over inputs. Alternatively, a randomized algorithm can be used. The analysis of such algorithms leads to the related notion of an expected complexity. The average-case performance of algorithms has been studied since modern notions of computational efficiency were developed in the 1950s. Much of this initial work focused on problems for which worst-case polynomial time algorithms were already known. In 1973, Donald Knuth published Volume 3 of the Art of Computer Programming which extensively surveys average-case performance of algorithms for problems solvable in worst-case polynomial time, such as sorting and median-finding. An efficient algorithm for NP-complete problems is generally characterized as one which runs in polynomial time for all inputs; this is equivalent to requiring efficient worst-case complexity. However, an algorithm which is inefficient on a "small" number of inputs may still be efficient for "most" inputs that occur in practice.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.