Publication

Residual Stresses in DC cast Aluminum Billet: Neutron Diffraction Measurements and Thermomechanical Modeling

Jean-Marie Drezet
2011
Conference paper
Abstract

Thermally-induced residual stresses, generated during the industrial Direct Chill casting process of aluminum alloys, can cause both significant safety concerns as well as the formation of defects during down-stream processing. Although these thermally induced strains can be partially relieved by permanent deformation, cracks will be generated either during solidification (hot tears) or post-solidification cooling (cold cracks) when stresses exceed the deformation limit of the alloy. Furthermore, the thermally induced strains result in the presence of large internal stresses within the billet before further processing steps. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. In the present work, the variation in residual elastic strains and stresses in the steady state regime of casting has been measured as a function of radial position using neutron diffraction in an AA6063 grain-refined cylindrical billet. These measurements have been carried out on the same billet section at Poldi at PSI-Villigen and at Salsa at ILL-Grenoble and compare favorably. The results are used to validate a thermo-mechanical finite element casting model and to assess the level of stored elastic energy within the billet.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.