Publication

β-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene

Abstract

A temperature programmed treatment of MoO3 in flowing N-2 + H-2 has been employed to prepare beta-phase molybdenum nitride (beta-Mo2N) which has been used to promote, for the first time, the catalytic hydrogenation of p-chloronitrobenzene. The reduction/nitridation synthesis steps have been monitored in situ and the starting oxide, reaction intermediates and nitride product have been identified and characterized by powder X-ray diffraction (XRD), diffuse reflectance UV-Vis (DRS UV-Vis), elemental analysis, scanning electron microscopy (SEM) and BET/pore volume measurements. Our results demonstrate that MoO3 -> beta-Mo2N is a kinetically controlled process where an initial reduction stage generates (sequentially) MoO2 and Mo as reaction intermediates with a subsequent incorporation of N to produce beta-Mo2N. SEM analysis has established that the transformation is non-topotactic with a disruption to the platelet morphology that characterizes MoO3 and an increase in BET area (from 1 m(2) g(-1) to 17 m(2) g(-1)). Moreover, temperature programmed desorption measurements have revealed a significant hydrogen uptake (0.71 mu mol m(-2)) on beta-Mo2N. This has been exploited in the hydrogenation of p-chloronitrobenzene where p-chloroaniline was generated as the sole product with an associated rate constant (k = 2.0 min(-1)) that is higher than values recorded for supported transition metals. Our study establishes the reaction mechanism involved in the synthesis of beta-Mo2N and demonstrates its viability to promote selective -NO2 group reduction as an alternative sustainable, high throughput route to commercially important haloamines.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Reaction mechanism
In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical reaction occurs. A chemical mechanism is a theoretical conjecture that tries to describe in detail what takes place at each stage of an overall chemical reaction. The detailed steps of a reaction are not observable in most cases. The conjectured mechanism is chosen because it is thermodynamically feasible and has experimental support in isolated intermediates (see next section) or other quantitative and qualitative characteristics of the reaction.
Hydrogenation
Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic compounds. Hydrogenation typically constitutes the addition of pairs of hydrogen atoms to a molecule, often an alkene. Catalysts are required for the reaction to be usable; non-catalytic hydrogenation takes place only at very high temperatures.
Boron
Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three valence electrons for forming covalent bonds, resulting in many compounds such as boric acid, the mineral sodium borate, and the ultra-hard crystals of boron carbide and boron nitride. Boron is synthesized entirely by cosmic ray spallation and supernovae and not by stellar nucleosynthesis, so it is a low-abundance element in the Solar System and in the Earth's crust.
Show more
Related publications (135)

Probing Catalytic Sites and Adsorbate Spillover on Ultrathin FeO2-x Film on Ir(111) during CO Oxidation

Harald Brune, Hao Yin, Wei Fang

The spatially resolved identification of active sites on the heterogeneous catalyst surface is an essential step toward directly visualizing a catalytic reaction with atomic scale. To date, ferrous centers on platinum group metals have shown promising pote ...
Washington2024

New Cu (I) complexes as catalyst for "click" reaction: An experimental and computational study

Farzaneh Fadaei Tirani

In this work, two novel well-defined Cu (I) complexes of a Schiff base ligand are described. For this purpose, N, N '-bis (trans-cinnamaldehyde) ethylenediimine [C20H20N2] (L) and Cu (I) complex of the type [CuC20H20N2)PPh3Cl] (C1) and [Cu(C20H20N2)PPh3Br] ...
WILEY2023

Highly Ordered and Thermally Stable FeRh Cluster Superlattice on Graphene for Low-Temperature Catalytic CO Oxidation

Harald Brune, Jean-Guillaume De Groot, Hao Yin

We report on bimetallic FeRh clusters with a narrow size-distribution grown on graphene on Ir(111) as a carbon-supported model catalyst to promote low-temperature catalytic CO oxidation. By combining scanning tunneling microscopy with catalytic performance ...
WILEY-V C H VERLAG GMBH2022
Show more
Related MOOCs (15)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.