Publication

3D Imaging of Catalyst Support Corrosion in Polymer Electrolyte Fuel Cells

2011
Journal paper
Abstract

During the lifetime of a polymer electrolyte fuel cell, the pore structure of the Pt/C catalyst layer may change as a result of carbon corrosion. Three-dimensional visualization of porosity changes is important to understand the origin of fuel cell performance deterioration. A focused ion beam/scanning electron microscopy (FIB/SEM) approach was adopted together with electron tomographic studies to visualize the three-dimensional pore structure of a Pt/C catalyst. In the case of pristine catalyst layers, the pores form an interconnected network. After 1000 start-up/shut-down cycles, severe carbon corrosion leads to a collapse of the support structure. The porosity of the degraded catalyst layer shrinks drastically, resulting in a structure of predominantly isolated pores. These porosity changes hinder the mass transport in the catalyst layer, consequently leading to a substantial loss of fuel cell performance. FIB/SEM serial sectioning and electron tomography allows three-dimensional imaging of the catalyst pore structure, which is a prerequisite for modeling and optimizing mass transport in catalyst layers.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.