Publication

Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze(E) versus R134a and R236fa

Abstract

Experimental condensation heat transfer data for the new refrigerant R1234ze(E), trans-1,3,3,3-tetrafluoropropene, are presented and compared with refrigerants R134a and R236fa for a vertically aligned, aluminum multi-port tube. Local condensation heat transfer measurements with such a multi-microchannel test section are very challenging due to the large uncertainties related to the heat flux estimation. Presently, a new experimental test facility was designed with a test section to directly measure the wall temperature along a vertically aligned aluminum multi-port tube with rectangular channels of 1.45 mm hydraulic diameter. Then, a new data reduction process was developed to compute the local condensation heat transfer coefficients accounting for the non-uniform distribution of the local heat flux along the channels. The condensation heat transfer coefficients showed the expected decrease as the vapor quality decreased (1.0-0.0) during the condensation process, as the mass velocity decreased (260-50 kg m(-2) s(-1)) and as the saturation temperature increased (25-70 degrees C). However, the heat transfer coefficients were not affected by the condensing heat flux (1-62 kW m(-2)) or by the entrance conditions within the tested range. It was found that the heat transfer performance of R1234ze(E) was about 15-25% lower than for R134a but relatively similar to R236fa. The experimental data were then compared with leading prediction methods from the literature for horizontal channels. In general, the agreement was poor, over-predicting the high Nusselt number data and under-predicting the low Nusselt number data, but capturing the mid-range quite well. A modified correlation was developed and yielded a good agreement with the current database for all three fluids over a wide range of operating conditions. (C) 2010 Elsevier Inc. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Heat exchanger
A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment.
Heat pipe
A heat pipe is a heat-transfer device that employs phase transition to transfer heat between two solid interfaces. At the hot interface of a heat pipe, a volatile liquid in contact with a thermally conductive solid surface turns into a vapor by absorbing heat from that surface. The vapor then travels along the heat pipe to the cold interface and condenses back into a liquid, releasing the latent heat. The liquid then returns to the hot interface through capillary action, centrifugal force, or gravity and the cycle repeats.
Heat transfer coefficient
In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat (i.e., the temperature difference, ΔT ). It is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient has SI units in watts per square meter per kelvin (W/m2/K).
Show more
Related publications (78)

Heat transfer of uncoated and nanostructure coated commercially micro-enhanced refrigeration tubes under pool boiling conditions

John Richard Thome

The heat transfer performance of commercially produced micro-enhanced tubes with and without a nanocoating was investigated under pool boiling of saturated refrigerant. These multiscale enhancements were on the outside of 19 mm horizontal copper tubes heat ...
Oxford2023

Experimental study of the hydrodynamic and thermal performances of ventilated wall structures

Dolaana Khovalyg, Mohammad Rahiminejad

The presence of a ventilated air gap behind the external cladding in a building envelope is known to have a tangible contribution to the overall performance of the wall assembly. In the present study, the hydrodynamic and thermal performances of ventilated ...
2023

Multiscale enhancement of refrigerant falling film boiling by combining commercially enhanced tubes with nanostructures

John Richard Thome

Multiscale surface structures offer the opportunity to combine the heat transfer enhancement provided by microscale structures with the dryout benefits provided by some nanostructures, which is particularly attractive for falling film evaporators, who have ...
Oxford2023
Show more
Related MOOCs (11)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Thermodynamics
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.