Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The maximization of a positive (semi) definite complex quadratic form over a finite alphabet is NP-hard and achieved through exhaustive search when the form has full rank. However, if the form is rank-deficient, the optimal solution can be computed with only polynomial complexity in the length N of the maximizing vector. In this work, we consider the general case of a rank-D positive (semi) definite complex quadratic form and develop a method that maximizes the form with respect to a M-phase vector with polynomial complexity. The proposed method efficiently reduces the size of the feasible set from exponential to polynomial. We also develop an algorithm that constructs the polynomial-size candidate set in polynomial time and observe that it is fully parallelizable and rank-scalable.
Serge Vaudenay, Bénédikt Minh Dang Tran
Maryam Kamgarpour, Tony Alan Wood