Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We demonstrate a high-resolution implementation of quasi-dynamic stencil lithography based on the integration of a micro-hotplate on the stencil membrane. The stencil design has been tailored so that the thermally actuated membrane reduces the gap between stencil and substrate. The membrane is locally heated during metal deposition to prevent aperture clogging, extending thus the stencil’s effective lifetime. Four consecutive depositions were performed in quasi-dynamic mode, i.e. by translating the stencil relative to the substrate in between deposition steps. The resolution of the transferred patterns on the substrate through the heated stencil is greatly improved compared to the case of the standard, non-heated stencil. After 200 nm evaporated Al, the pattern distortion is reduced by 70% and the main structure maintains 97% of its size as opposed to decreasing by 40% for the standard clogged stencil.
Niels Quack, Dorian Giraud Herle
François Gallaire, Pier Giuseppe Ledda, Giuseppe Antonio Zampogna, Kevin Wittkowski