Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
To provide high ranging precision in multipath environments, a ranging protocol should find the first arriving path, rather than the strongest path. We demonstrate a new attack vector that disrupts such precise Time-of-Arrival (ToA) estimation, and allows an adversary to decrease the measured distance by a value in the order of the channel spread (10-20 meters). This attack vector can be used in previously reported physical-communication-layer (PHY) attacks against secure ranging (or distance bounding). Furthermore, it creates a new type of attack based on malicious interference: This attack is much easier to mount than the previously known external PHY attack (distance-decreasing relay) and it can work even if secret preamble codes are used. We evaluate the effectiveness of this attack for a PHY that is particularly well suited for precise ranging in multipath environments: Impulse Radio Ultra-Wideband (IR-UWB). We show, with PHY simulations and experiments, that the attack is effective against a variety of receivers and modulation schemes. Furthermore, we identify and evaluate three types of countermeasures that allow for precise and secure ranging.
Seyed Armin Tajalli, Yusuf Leblebici, Firat Çelik, Ayça Akkaya