Publication

On the benefits of vector network coding

Christina Fragouli, Javad Ebrahimi Boroojeni
2010
Article de conférence
Résumé

In vector network coding, the source multi- casts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L × L coding matrices that play a similar role as coding coefficients in scalar coding. Vector network coding generalizes scalar coding, and thus offers a wider range of solutions over which to optimize. This paper starts exploring the new possibilities vector network coding can offer along two directions. First, we propose a new randomized algorithm for vector network coding. We compare the performance of our proposed algorithm with the existing randomized al- gorithms in the literature over a specific class of networks. Second, we explore the use of structured coding matrices for vector network coding. We present deterministic de- signs that allow to operate using rotation coding matrices and thus result in reduced encoding complexity.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.