Publication

Joint Reconstruction of Correlated Images from Compressed Images

Abstract

This paper proposes a novel joint reconstruction algorithm to decode sets of correlated images from distributively compressed images. We consider a scenario where the images captured at different viewpoints are encoded independently using transform-based coding solutions (e.g., SPIHT) with a balanced rate distribution among different cameras. A central decoder jointly processes the compressed images and reconstructs an image pair by exploiting the correlation between images. The central decoder first estimates the underlying correlation model from the independently compressed images and it is eventually used for the joint signal recovery. The joint reconstruction is cast as a constrained convex optimization problem that reconstructs a total-variation (TV) smooth image pair that satisfies with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be as close as possible to the compressed views. We show by experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.