Publication

On the Performance of Software Transactional Memory

Aleksandar Dragojevic
2012
EPFL thesis
Abstract

The recent proliferation of multi-core processors has moved concurrent programming into mainstream by forcing increasingly more programmers to write parallel code. Using traditional concurrency techniques, such as locking, is notoriously difficult and has been considered the domain of a few experts for a long time. This discrepancy between the established techniques and typical programmer's skills raises a pressing need for new programming paradigms. A particularly appealing concurrent programming paradigm is transactional memory: it enables programmers to write correct concurrent code in a simple manner, while promising scalable performance. Software implementations of transactional memory (STM) have attracted a lot of attention for their ability to support dynamic transactions of any size and execute on existing hardware. This is in contrast to hardware implementations that typically support only transactions of limited size and are not yet commercially available. Surprisingly, prior work has largely neglected software support for transactions of arbitrary size, despite them being an important target for STM. Consequently, existing STMs have not been optimized for large transactions, which results in poor performance of those STMs, and sometimes even program crashes, when dealing with large transactions. In this thesis, I contribute to changing the current state of affairs by improving performance and scalability of STM, in particular with dynamic transactions of arbitrary size. I propose SwissTM, a novel STM design that efficiently supports large transactions, while not compromising on performance with smaller ones. SwissTM features: (1) mixed conflict detection, that detects write-write conflicts eagerly and read-write conflicts lazily, and (2) a two-phase contention manager, that imposes little overhead on small transactions and effectively manages conflicts between larger ones. SwissTM indeed achieves good performance across a range of workloads: it outperforms several state-of-the-art STMs on a representative large-scale benchmark by at least 55% with eight threads, while matching their performance or outperforming them across a wide range of smaller-scale benchmarks. I also present a detailed empirical analysis of the SwissTM design, individually evaluating each of the chosen design points and their impact on performance. This "dissection" of SwissTM is particularly valuable for STM designers as it helps them understand which parts of the design are well-suited to their own STMs, enabling them to reuse just those parts. Furthermore, I address the question of whether STM can perform well enough to be practical by performing the most extensive comparison of performance of STM-based and sequential, non-thread-safe code to date. This comparison demonstrates the very fact that SwissTM indeed outperforms sequential code, often with just a handful of threads: with four threads it outperforms sequential code in 80% of cases, by up to 4x. Furthermore, the performance scales well when increasing thread counts: with 64 threads it outperforms sequential code by up to 29x. These results suggest that STM is indeed a viable alternative for writing concurrent code today.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (38)
Transactional memory
In computer science and engineering, transactional memory attempts to simplify concurrent programming by allowing a group of load and store instructions to execute in an atomic way. It is a concurrency control mechanism analogous to database transactions for controlling access to shared memory in concurrent computing. Transactional memory systems provide high-level abstraction as an alternative to low-level thread synchronization. This abstraction allows for coordination between concurrent reads and writes of shared data in parallel systems.
Parallel computing
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.
Programming paradigm
Programming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms. Some paradigms are concerned mainly with implications for the execution model of the language, such as allowing side effects, or whether the sequence of operations is defined by the execution model. Other paradigms are concerned mainly with the way that code is organized, such as grouping a code into units along with the state that is modified by the code.
Show more
Related publications (83)

Building Chips Faster: Hardware-Compiler Co-Design for Accelerated RTL Simulation

Sahand Kashani

The demise of Moore's Law and Dennard scaling has resulted in diminishing performance gains for general-purpose processors, and so has prompted a surge in academic and commercial interest for hardware accelerators.Specialized hardware has already redefined ...
EPFL2023

Fast Parallel Algorithms for Enumeration of Simple, Temporal, and Hop-constrained Cycles

Paolo Ienne, Kubilay Atasu, Jovan Blanusa

Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables important applications in a wide variety of fields, including finance, biology, chemistry, and network science. However, to enable cycle enumeration in r ...
New York2023

Cooperative Concurrency Control for Write-Intensive Key-Value Workloads

Babak Falsafi, Alexandros Daglis, Mark Johnathon Sutherland

Key-Value Stores (KVS) are foundational infrastructure components for online services. Due to their latency-critical nature, today’s best-performing KVS contain a plethora of full-stack optimizations commonly targeting read-mostly, popularity-skewed worklo ...
ACM2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.