Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables important applications in a wide variety of fields, including finance, biology, chemistry, and network science. However, to enable cycle enumeration in real-world applications, efficient parallel algorithms are required. In this work, we propose scalable parallelisation of state-of-the-art sequential algorithms for enumerating simple, temporal, and hop-constrained cycles. First, we focus on the simple cycle enumeration problem and parallelise the algorithms by Johnson and by Read and Tarjan in a fine-grained manner. We theoretically show that our resulting fine-grained parallel algorithms are scalable, with the fine-grained parallel ReadTarjan algorithm being strongly scalable. In contrast, we show that straightforward coarse-grained parallel versions of these simple cycle enumeration algorithms that exploit edge- or vertex-level parallelism are not scalable. Next, we adapt our fine-grained approach to enable the enumeration of cycles under time-window, temporal, and hop constraints. Our evaluation on a cluster with 256 CPU cores that can execute up to 1,024 simultaneous threads demonstrates a near-linear scalability of our fine-grained parallel algorithms when enumerating cycles under the aforementioned constraints. On the same cluster, our fine-grained parallel algorithms achieve, on average, one order of magnitude speedup compared to the respective coarse-grained parallel versions of the state-of-the-art algorithms for cycle enumeration. The performance gap between the fine-grained and the coarse-grained parallel algorithms increases as we use more CPU cores.
Paolo Ienne, Kubilay Atasu, Jovan Blanusa
, ,