Publication

RANSAC-based Enhancement in Drug Concentration Prediction Using Support Vector Machine

Abstract

Training Support Vector Machines (SVMs) to predict drugs concentrations is often difficult because of the high level of noise in the training data, due to various kinds of measurement errors. We apply RANdom SAmple Consensus (RANSAC) algorithm in this paper to solve this problem, enhancing the prediction accuracy by more than 40% in our particular case study. A personalized sample selection method is proposed to further improve the prediction result in most cases.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.