Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We describe S2LET, a fast and robust implementation of the scale-discretised wavelet transform on the sphere. Wavelets are con- structed through a tiling of the harmonic line and can be used to probe spatially localised, scale-depended features of signals on the sphere. The scale-discretised wavelet transform was developed previously and reduces to the needlet transform in the axisymmetric case. The reconstruction of a signal from its wavelets coefficients is made exact here through the use of a sampling theorem on the sphere. Moreover, a multiresolution algorithm is presented to capture all information of each wavelet scale in the minimal number of samples on the sphere. In addition S2LET supports the HEALPix pixelisation scheme, in which case the transform is not exact but nevertheless achieves good numerical accuracy. The core routines of S2LET are written in C and have interfaces in Matlab, IDL and Java. Real signals can be written to and read from FITS files and plotted as Mollweide projections. The S2LET code is made publicly available, is extensively documented, and ships with several examples in the four languages supported. At present the code is restricted to axisymmetric wavelets but will be extended to directional, steerable wavelets in a future release.
Fabio Nobile, Simone Brugiapaglia