Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Multi-gate devices e.g. gate-all-around (GAA) Si nanowires and FinFETs are promising can- didates for aggressive CMOS downscaling. Optimum subthreshold slope, immunity against short channel effect and optimized power consumption are the major benefits of such archi- tectures due to higher electrostatic control of the channel. On the other hand, Si nanowires show excellent mechanical properties e.g. yield and fracture strengths of 10±2% and 30±1% in comparison to 3.7% and 4.0% for bulk Si, respectively, a strong motivation to be used as exclusive platforms for innovative nanoelectronic applications e.g. novel strain engineering techniques for carrier transport enhancement in multi-gate 3D suspended channels or lo- cal band-gap modulation using > 4 GPa uniaxial tensile stress in suspended Si channels to enhance the band-to-band tunneling current in multi-gate Tunnel-FETs, all without plastic deformation and therefore, no carrier mobility degradation in deeply scaled channels. In this thesis and as a first step, a precise built-in stress analysis during local thermal oxidation of suspended Si NWs in the presence of a Si3N4 tensile hard mask was done. Accumulation of up to 2.6 GPa uniaxial tensile stress in the buckled NWs is reported. The contribution of hard mask/spacer engineering on the stress level and the NW formation was studied and buckled self-aligned dual NW MOSFETs on bulk Si with two sub-100 nm cross-sectional Si cores including ∼0.8 uniaxial tensile stress are reported. Micro-Raman spectroscopy was widely used in this thesis to measure stress in the buckled NWs on both bulk and SOI substrates. A process flow was designed to make dense array of GAA sub-5 nm cross-sectional Si NWs using a SOI substrate including a high level of stress. The NW stress level can be engineered simply using e.g. metal-gate thin film stress suitable for both NMOS and PMOS devices. Lately, highly and heavily doped architectures with a single-type doping profile from source to drain, called junctionless and accumulation-mode devices, are proposed to significantly simplify the fabrication process, address a few technical limitations e.g. ultra-abrupt junctions in order to fabricate shorter channel length devices. Therefore, in this process flow, a highly doped accumulation-mode was targeted as the operation mechanism. Finally, extensive TCAD device simulation was done on GAA Si NW JL MOSFETs to study the corner effects on the device characteristics, from subthreshold to strong accumulation, report the concept of local volume accumulation/depletion, quantum flat-band voltage, significant bias-dependent series resistance in junctionless MOSFETs and finally, support the experimental data to extract precisely the carrier mobility in sub-5 nm Si NW MOSFETs.
Yusuf Leblebici, Mohammad Nasr Esfahani, Ece Öztürk