We describe a multi-modal brain-computer interface (BCI) experiment, situated in a highly immersive CAVE. A subject sitting in the virtual environment controls the main character of a virtual reality game: a penguin that slides down a snowy mountain slope. While the subject can trigger a jump action via the BCI, additional steering with a game controller as a secondary task was tested. Our experiment profits from the game as an attractive task where the subject is motivated to get a higher score with a better BCI performance. A BCI based on the so-called brain-switch was applied, which allows discrete asynchronous actions. Fourteen subjects participated, of which 50% achieved the required performance to test the penguin game. Comparing the BCI performance during the training and the game showed that a transfer of skills is possible, in spite of the changes in visual complexity and task demand. Finally and most importantly, our results showed that the use of a secondary motor task, in our case the joystick control, did not deteriorate the BCI performance during the game. Through these findings, we conclude that our chosen approach is a suitable multi-modal or hybrid BCI implementation, in which the user can even perform other tasks in parallel.
Olaf Blanke, José del Rocio Millán Ruiz, Ronan Boulic, Bruno Herbelin, Ricardo Andres Chavarriaga Lozano, Fumiaki Iwane
Basil Duval, Christian Gabriel Theiler, Cristian Galperti, Artur Perek