Publication

An in situ diffraction study of domain wall motion contributions to the frequency dispersion of the piezoelectric coefficient in lead zirconate titanate

Dragan Damjanovic
2013
Journal paper
Abstract

The contribution of non-180 degrees domain wall displacement to the frequency dependence of the longitudinal piezoelectric coefficient has been determined experimentally in lead zirconate titanate using time-resolved, in situ neutron diffraction. Under subcoercive electric fields of low frequencies, approximately 3% to 4% of the volume fraction of non-180 degrees domains parallel to the field experienced polarization reorientation. This subtle non-180 degrees domain wall motion directly contributes to 64% to 75% of the magnitude of the piezoelectric coefficient. Moreover, part of the 33 pm/V decrease in piezoelectric coefficient across 2 orders of magnitude in frequency is quantitatively attributed to non-180 degrees domain wall motion effects. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789903]

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (22)
Piezoelectricity
Piezoelectricity (ˌpiːzoʊ-,_ˌpiːtsoʊ-,_paɪˌiːzoʊ-, piˌeɪzoʊ-,_piˌeɪtsoʊ-) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure and latent heat. It is derived (an ancient source of electric current). The piezoelectric effect results from the linear electromechanical interaction between the mechanical and electrical states in crystalline materials with no inversion symmetry.
Barium titanate
Barium titanate (BTO) is an inorganic compound with chemical formula BaTiO3. Barium titanate appears white as a powder and is transparent when prepared as large crystals. It is a ferroelectric, pyroelectric, and piezoelectric ceramic material that exhibits the photorefractive effect. It is used in capacitors, electromechanical transducers and nonlinear optics. Perovskite (structure) The solid exists in one of four polymorphs depending on temperature.
Lead zirconate titanate
Lead zirconate titanate, also called lead zirconium titanate and commonly abbreviated as PZT, is an inorganic compound with the chemical formula It is a ceramic perovskite material that shows a marked piezoelectric effect, meaning that the compound changes shape when an electric field is applied. It is used in a number of practical applications such as ultrasonic transducers and piezoelectric resonators. It is a white to off-white solid. Lead zirconium titanate was first developed around 1952 at the Tokyo Institute of Technology.
Show more
Related publications (51)

Material Parameter Extraction for Complex AlScN Thin Film Using Dual Mode Resonators in Combination with Advanced Microstructural Analysis and Finite Element Modeling

Paul Muralt, Silviu Cosmin Sandu, Mohammad Fazel Parsapour Kolour, Vladimir Pashchenko, Kaoru Yamashita

Accurate property determination of the piezoelectric thin film material Al(1-x)Sc(x)N is necessary for designing the next generation of radio frequency resonators in mobile communication, and for testing results of ab initio calculations. Sound velocity an ...
WILEY2019

Frequency-dependent decoupling of domain-wall motion and lattice strain in bismuth ferrite

Dragan Damjanovic

Dynamics of domain walls are among the main features that control strain mechanisms in ferroic materials. Here, we demonstrate that the domain-wall-controlled piezoelectric behaviour in multiferroic BiFeO3 is distinct from that reported in classical ferroe ...
2018

Strain generation and energy-conversion mechanisms in lead-based and lead-free piezoceramics

Dragan Damjanovic

Piezoelectric ceramics generate strain through the intrinsic piezoelectric effect, the motion of ferroelectric domain walls, or through field-induced phase transitions. The enhanced piezoelectric properties observed in morphotropic solid solutions arise fr ...
2018
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.