Publication

Topology of evolving pore networks

Abstract

Morphological and topological quantification of complex pore networks is of great relevance for environmental engineering, earth science and industry. Recent developments of 3D imaging techniques such as X-ray microtomography or X-ray microscopy provide an opportunity to perform a comprehensive analysis of the pore network topology. Such an analysis is crucial to understand how transport or mechanical properties evolve during the growth and/or the aging of a pore network, especially near a percolation threshold. In the first part of this work, we present some properties related to the graph of retraction of a 3D pore network, a powerful way to characterize the topological evolution. In the second part, we analyze the topology of an evolving 3D pore network in the vicinity of a percolation transition. Two distinct scenarii of evolution are presented. The last part is dedicated to an experimental example of evolving pore network: the setting of an ordinary cement paste probed in its early age by synchrotron X-ray microcomputerized tomography.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.