**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Alejandro Rivera

This person is no longer with EPFL

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related research domains (3)

Related publications (4)

Percolation theory

In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger connected, so-called spanning clusters. The applications of percolation theory to materials science and in many other disciplines are discussed here and in the articles Network theory and Percolation (cognitive psychology).

Gaussian process

In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination of them is normally distributed. The distribution of a Gaussian process is the joint distribution of all those (infinitely many) random variables, and as such, it is a distribution over functions with a continuous domain, e.g.

Percolation

In physics, chemistry, and materials science, percolation () refers to the movement and filtering of fluids through porous materials. It is described by Darcy's law. Broader applications have since been developed that cover connectivity of many systems modeled as lattices or graphs, analogous to connectivity of lattice components in the filtration problem that modulates capacity for percolation.

We develop techniques to study the phase transition for planar Gaussian percolation models that are not (necessarily) positively correlated. These models lack the property of positive associations (also known as the 'FKG inequality'), and hence many classi ...

In this paper, we consider a compact connected manifold (X, g) of negative curvature, and a family of semi-classical Lagrangian states f(h)(x) = a(x)e(i phi(x)/h) on X. For a wide family of phases phi, we show that f(h), when evolved by the semi-classical ...

For the Bargmann-Fock field on R-d with d >= 3, we prove that the critical level l(c) (d) of the percolation model formed by the excursion sets {f >= l} is strictly positive. This implies that for every l sufficiently close to 0 (in particular for the noda ...