Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Kinetics of Atrial Repolarization Alternans. Introduction: Repolarization alternans (Re-ALT), a beat-to-beat alternation in action potential repolarization, promotes dispersion of repolarization, wavebreaks, and reentry. Recently, Re-ALT has been shown to play an important role in the transition from rapid pacing to atrial fibrillation (AF) in humans. The detailed kinetics of atrial Re-ALT, however, has not been reported so far. We developed a chronic free-behaving ovine pacing model to study the kinetics of atrial Re-ALT as a function of pacing rate. Methods: Thirteen sheep were chronically implanted with 2 pacemakers for the recording of broadband right atrial unipolar electrograms and delivery of rapid pacing protocols. Beat-to-beat differences in the atrial T-wave apex amplitude as a measure of Re-ALT and activation time were analyzed at incremental pacing rates until the effective refractory period (ERP) defined as stable 2:1 capture. Results: Atrial Re-ALT appeared intermittently but without periodicity, and increased in amplitude as a function of pacing rate until ERP. Intermittent 2:1 atrial capture was observed at pacing cycle lengths 40 ms above ERP, and increased in duration as a function of pacing rate. Episodes of rapid pacing-induced AF were rare, and were preceded by Re-ALT or complex oscillations of atrial repolarization, but without intermittent capture. Conclusion: We show in vivo that atrial Re-ALT developed and increased in magnitude with rate until stable 2:1 capture. In rare instances where capture failure did not occur, Re-ALT and complex oscillations of repolarization surged and preceded AF initiation. (J Cardiovasc Electrophysiol, Vol. 23, pp. 1003-1012, September 2012)
Pierre-Marc Jean Marie Dansette
Jean-Marc Vesin, Vincent Schlageter