Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Ultrafast acoustoelectric imaging (UAI) is a novel method for the mapping of biological current densities, which may improve the diagnosis and monitoring of cardiac activation diseases such as arrhythmias. This paper evaluates the feasibility of performing UAI in beating rat hearts. A previously described system based on a 256-channel ultrasound research platform fitted with a 5-MHz linear array was used for simultaneous UAI, ultrafast B-mode, and electrocardiogram (ECG) recordings. In this paper, rat hearts (n = 4) were retroperfused within a Langendorff isolated heart system. A pair of Ag/Cl electrodes were positioned on the epicardium to simultaneously record ECG and UAI signals for imaging frame rates of up to 1000 Hz and a mechanical index of 1.3. To account for the potential effect of motion on the UAI maps, acquisitions for n = 3 hearts were performed with and without suppression of the mechanical contraction using 2,3-butanedione monoxime. Current densities were detected for all four rats in the region of the atrio-ventricular node, with an average contrast-to-noise ratios of 12. The UAI signals' frequency matched the sinus rhythm, even without mechanical contraction, suggesting that the signals measured correspond to physiological electrical activation. UAI signals appeared at the apex and within the ventricular walls with a delay estimated at 29 ms. Finally, the signals from different electrode positions along the myocardium wall showed the possibility of mapping the electrical activation throughout the heart. These results show the potential of UAI for cardiac activation mapping in vivo and in real time.
,