Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We review the status of sterile neutrino dark matter and discuss astrophysical and cosmological bounds on its properties as well as future prospects for its experimental searches. We argue that if sterile neutrinos are the dominant fraction of dark matter, detecting an astrophysical signal from their decay (the so-called 'indirect detection') may be the only way to identify these particles experimentally. However, it may be possible to check the dark matter origin of the observed signal unambiguously using its characteristic properties and/or using synergy with accelerator experiments, searching for other sterile neutrinos, responsible for neutrino flavor oscillations. We argue that to fully explore this possibility a dedicated cosmic mission - an X-ray spectrometer - is needed. © 2012 Elsevier B.V.
Georges Meylan, Bo Li, Yi Wang, Richard Massey