vignette|Phénomène périodique
L'oscillation du neutrino est un phénomène de la mécanique quantique dans lequel un neutrino créé avec une certaine saveur leptonique (neutrino électronique, muonique ou tauique) peut être mesuré plus tard ayant une saveur différente.
La probabilité d'avoir une valeur donnée de cette propriété varie de façon périodique alors que la particule se propage. L'oscillation du neutrino est d'intérêt tant théorique qu'expérimental, puisque l'observation de ce phénomène implique la non-nullité de la masse de la particule, .
Il existe trois saveurs de neutrino, en rapport avec chacun des leptons chargés : le neutrino électronique νe , le neutrino muonique νμ et le neutrino tauique ντ.
Il s'agit en fait des états propres du lagrangien d'interaction, c’est-à-dire des seules solutions possibles de l'interaction faible. Or, le lagrangien de propagation, décrivant la manière dont les neutrinos se propagent, a des états propres différents, que l'on nommera ν1, ν2 et ν3. La matrice PMNS d'éléments Uαi, où α est un état propre d'interaction (e, μ ou τ) et i un état propre de propagation (1, 2 ou 3), permet de passer d'une base à une autre. Ainsi, un neutrino électronique créé lors d'une interaction est une combinaison linéaire des trois états propres de propagation. Comme ces trois états propres se propagent à des vitesses différentes, la combinaison de ν1, ν2 et ν3 évolue en fonction de la distance parcourue et de l'énergie du neutrino initial. C'est pourquoi, à un certain point de propagation, la combinaison qui sera détectée peut correspondre à celle d'un neutrino muonique ou tauique. Le neutrino initialement électronique a changé de saveur : on parle d'oscillation du neutrino.
Le processus ne peut être observé qu'à . Les états propres d'interaction et de propagation doivent être différents, ce qui induit des vitesses de propagation différentes, correspondant à des masses différentes (pour une même énergie).
En 1957-1958, Bruno Pontecorvo considère la possibilité d'une masse faible mais non nulle des neutrinos.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course presents the physical principles and the recent research developments on three topics of particle and nuclear physics: the physics of neutrinos, dark matter, and plasmas of quarks and gluo
Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
La saveur, en physique des particules, est une caractéristique permettant de distinguer différents types de leptons et de quarks, deux sous-familles des fermions. Les leptons se déclinent en trois saveurs et les quarks en six saveurs. Les saveurs permettent de distinguer certaines classes de particules dont les autres propriétés (charge électrique, interactivité) sont similaires. Les dénominations des saveurs ont été introduites par Murray Gell-Mann, baptisant le quark étrange lors de la détection du kaon en 1964.
Le est, en physique des particules, un nombre quantique invariant (tout comme le nombre baryonique) attribué aux particules et faisant l'objet d'une conservation lors d'une réaction nucléaire. Le nombre leptonique d'un système est défini comme la différence entre les nombres de leptons et d'antileptons qu'il contient : Le nombre leptonique est aussi défini comme la somme de trois nombres quantiques dits nombres leptoniques partiels : Le nombre leptonique vaut +1 pour un lepton, -1 pour un antilepton et 0 pour toute autre particule.
Le mécanisme de see-saw, mécanisme de la balancoire ou mécanisme à bascule, en théorie quantique des champs, permet de générer de très petits nombres à partir de nombres « raisonnables » et de grands nombres. Ce mécanisme apparaît notamment dans les théories de grande unification, et en particulier pour expliquer les masses des neutrinos et leur oscillation. Ce modèle produit un neutrino léger, pour chacune des trois saveurs de neutrinos connues, et un neutrino stérile, très lourd et encore non découvert.
Explore la conservation de l'énergie mécanique et son application dans la résolution de problèmes de physique impliquant le travail, la stabilité et les transformations énergétiques.
Particle accelerators are the drivers for large-scale research infrastructures for particle physics but also for many branches of condensed matter research. The types of accelerator-driven research infrastructures include particle colliders, neutron, muon ...
2024
, , , ,
Scintillating fibre detectors combine sub-mm resolution particle tracking, precise measurements of the particle stopping power and sub-ns time resolution. Typically, fibres are read out with silicon photomultipliers (SiPM). Hence, if fibres with a few hund ...