Publication

Implementation Aspects of Model Predictive Control for Embedded Systems

Timm Faulwasser
2012
Conference paper
Abstract

In this paper we discuss implementation related aspects of model predictive control schemes on embedded platforms. Exemparily we focus on fast gradient methods and present results from an implementation on an embedded lowcost ARM processor. We show that input quantization taking place in actuators should be taken into account in order to determine the maximum number of iterations of the online optimization. Furthermore, we present results which allow to determine the online memory demand of the fast-gradient MPC algorithm on the embedded system offline. As a case study we consider a Segway-like robot, modeled by an LTI-system with 8 states and 2 inputs subject to box input constraints. The test system runs at a sampling rate of 4ms and uses MPC horizons up to 20 steps in a hard realtime system with limited CPU time and memory.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.