Publication

Massively parallel measurements of molecular interaction kinetics on a microfluidic platform

Sebastian Maerkl, Marcel Geertz
2012
Journal paper
Abstract

Quantitative biology requires quantitative data. No high-throughput technologies exist capable of obtaining several hundred independent kinetic binding measurements in a single experiment. We present an integrated microfluidic device (k-MITOMI) for the simultaneous kinetic characterization of 768 biomolecular interactions. We applied k-MITOMI to the kinetic analysis of transcription factor (TF)-DNA interactions, measuring the detailed kinetic landscapes of the mouse TF Zif268, and the yeast TFs Tye7p, Yox1p, and Tbf1p. We demonstrated the integrated nature of k-MITOMI by expressing, purifying, and characterizing 27 additional yeast transcription factors in parallel on a single device. Overall, we obtained 2,388 association and dissociation curves of 223 unique molecular interactions with equilibrium dissociation constants ranging from 2 x 10(-6) M to 2x 10(-9) M, and dissociation rate constants of approximately 6 s(-1) to 8.5 x 10(-3) s(-1). Association rate constants were uniform across 3 TF families, ranging from 3.7 x 10(6) M-1 s(-1) to 9.6 x 10(7) M-1 s(-1), and are well below the diffusion limit. We expect that k-MITOMI will contribute to our quantitative understanding of biological systems and accelerate the development and characterization of engineered systems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.