Summary
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant. A knowledge of equilibrium constants is essential for the understanding of many chemical systems, as well as biochemical processes such as oxygen transport by hemoglobin in blood and acid–base homeostasis in the human body. Stability constants, formation constants, binding constants, association constants and dissociation constants are all types of equilibrium constants. For a system undergoing a reversible reaction described by the general chemical equation a thermodynamic equilibrium constant, denoted by , is defined to be the value of the reaction quotient Qt when forward and reverse reactions occur at the same rate. At chemical equilibrium, the chemical composition of the mixture does not change with time and the Gibbs free energy change for the reaction is zero. If the composition of a mixture at equilibrium is changed by addition of some reagent, a new equilibrium position will be reached, given enough time. An equilibrium constant is related to the composition of the mixture at equilibrium by where {X} denotes the thermodynamic activity of reagent X at equilibrium, [X] the numerical value of the corresponding concentration in moles per liter, and γ the corresponding activity coefficient. If X is a gas, instead of [X] the numerical value of the partial pressure in bar is used.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (20)
ChE-311: Biochemical engineering
This course introduces the basic principles of bioprocess engineering and highlights the similarities and differences with chemical engineering. Without going into the fundamentals, it proposes an ove
MSE-204: Thermodynamics for materials science
This course establishes the basic concepts of thermodynamics and defines the main state functions. The concepts are then applied to the study of phase diagrams of various systems.
ENV-200: Environmental chemistry
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
Show more