Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We propose a novel and general framework to learn compact but highly discriminative floating-point and binary local feature descriptors. By leveraging the boosting-trick we first show how to efficiently train a compact floating-point descriptor that is very robust to illumination and viewpoint changes. We then present the main contribution of this paper — a binary extension of the framework that demonstrates the real advantage of our approach and allows us to compress the descriptor even further. Each bit of the resulting binary descriptor, which we call BinBoost, is computed with a boosted binary hash function, and we show how to efficiently optimize the hash functions so that they are complementary, which is key to compactness and robustness. As we do not put any constraints on the weak learner configuration underlying each hash function, our general framework allows us to optimize the sampling patterns of recently proposed hand-crafted descriptors and significantly improve their performance. Moreover, our boosting scheme can easily adapt to new applications and generalize to other types of image data, such as faces, while providing state-of-the-art results at a fraction of the matching time and memory footprint.
Ksenia Briling, Alberto Fabrizio, Sergio Vela Llausi
Rachid Guerraoui, Aleksandar Dragojevic, Mihail Igor Zablotchi, Tudor Alexandru David