Publication

PyroTRF-ID: a novel bioinformatics methodology for the affiliation of terminal-restriction fragments using 16S rRNA gene pyrosequencing data

Abstract

The PyroTRF-ID bioinformatics methodology (http://bbcf.epfl.ch/PyroTRF-ID/) was developed to combine pyrosequencing and T-RFLP for describing microbial communities and identifying T-RFs by comparison of experimental and digital T-RFLP profiles obtained from the same biological samples. DNA extracts were subjected to amplification of the 16S rRNA gene pool, T-RFLP with the HaeIII restriction enzyme, 454 tag encoded FLX amplicon pyrosequencing, and PyroTRF-ID analysis. Digital T-RFLP profiles were generated from the denoised pyrosequencing datasets. Sequences contributing to each digital T-RF were classified to taxonomic bins using the Greengenes reference database. The method was tested on bacterial communities found in chloroethene-contaminated groundwater samples and in granular biofilms from lab-scale wastewater treatment systems. PyroTRF-ID was efficient for high-throughput mapping and digital T-RFLP profiling of pyrosequencing datasets. After denoising, multiple datasets comprising ca. 10'000 reads of 300-500 bp were processed in parallel within ca. 20 minutes on a high-performance computing cluster running on a Linux-related CentOS 5.5 operating system. Both digital and experimental T-RFLP profiles were aligned with maximum cross-correlation coefficients of 0.71 and 0.92 for high- and low-complexity environments, respectively. On average, 63±18% of all experimental T-RFs (30 to 93 peaks per sample) were affiliated to phylotypes. PyroTRF-ID profits from complementary advantages of massive sequencing and T-RFLP in order to optimize laboratory and computational efforts for investigating microbial community structures and dynamics in any biological system. Massive sequencing provides high resolution in the analysis of microbial communities, and can be performed on a restricted set of selected samples. T-RFLP enables simultaneous fingerprinting of numerous samples at low cost and is adapted for routine analysis and follow-up of microbial communities on long term.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
DNA sequencing
DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and discovery. Knowledge of DNA sequences has become indispensable for basic biological research, DNA Genographic Projects and in numerous applied fields such as medical diagnosis, biotechnology, forensic biology, virology and biological systematics.
Metagenomics
Metagenomics is the study of genetic material recovered directly from environmental or clinical samples by a method called sequencing. The broad field may also be referred to as environmental genomics, ecogenomics, community genomics or microbiomics. While traditional microbiology and microbial genome sequencing and genomics rely upon cultivated clonal cultures, early environmental gene sequencing cloned specific genes (often the 16S rRNA gene) to produce a profile of diversity in a natural sample.
Massive parallel sequencing
Massive parallel sequencing or massively parallel sequencing is any of several high-throughput approaches to DNA sequencing using the concept of massively parallel processing; it is also called next-generation sequencing (NGS) or second-generation sequencing. Some of these technologies emerged between 1993 and 1998 and have been commercially available since 2005. These technologies use miniaturized and parallelized platforms for sequencing of 1 million to 43 billion short reads (50 to 400 bases each) per instrument run.
Show more
Related publications (44)

Comparison of Three Viral Nucleic Acid Preamplification Pipelines for Sewage Viral Metagenomics

Tamar Kohn, Xavier Fernandez Cassi

Viral metagenomics is a useful tool for detecting multiple human viruses in urban sewage. However, more refined protocols are required for its effective use in disease surveillance. In this study, we investigated the performance of three different preampli ...
2024

Multi-well plate lid for single-step pooling of 96 samples for high-throughput barcode-based sequencing

Bart Deplancke, Daniel Migliozzi, Gilles Weder, Riccardo Dainese, Daniel Alpern, Hüseyin Baris Atakan, Mustafa Demir, Dariia Gudkova

High-throughput transcriptomics is of increasing fundamental biological and clinical interest. The generation of molecular data from large collections of samples, such as biobanks and drug libraries, is boosting the development of new biomarkers and treatm ...
Dordrecht2024

Comparison of two methods for bioaerosol sampling and characterization in a low-biomass chamber environment

Dusan Licina, Shen Yang, Marouane Merizak, Akila Muthalagu

Bioaerosols are emitted from various sources into the indoor environment and can positively and negatively impact human health. Humans are the major source of bioaerosol emissions indoors, specifically for bacteria. However, efficient sampling to guarantee ...
PERGAMON-ELSEVIER SCIENCE LTD2023
Show more
Related MOOCs (6)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.