Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We analyze how the choice of the sampling weight affects efficiency of the Monte Carlo evaluation of classical time autocorrelation functions. Assuming uncorrelated sampling or sampling with constant correlation length, we propose a sampling weight for which the number of trajectories needed for convergence is independent of the correlated quantity, dimensionality, dynamics, and phase-space density. By contrast, it is shown that the computational cost of the “standard” algorithm sampling from the phase-space density may scale exponentially with the number of degrees of freedom. Yet, for the stationary Gaussian distribution of harmonic systems and for the autocorrelation function of a linear function of phase-space coordinates, the computational cost of this standard algorithm is also independent of dimensionality.
Olga Fink, Raffael Pascal Theiler, Michele Viscione
, ,
Jean-Philippe Thiran, Erick Jorge Canales Rodriguez, Gabriel Girard, Marco Pizzolato, Alonso Ramirez Manzanares, Juan Luis Villarreal Haro, Alessandro Daducci, Ying-Chia Lin, Sara Sedlar, Caio Seguin, Kenji Marshall, Yang Ji