Résumé
L'autocorrélation est un outil mathématique souvent utilisé en traitement du signal. C'est la corrélation croisée d'un signal par lui-même. L'autocorrélation permet de détecter des régularités, des profils répétés dans un signal comme un signal périodique perturbé par beaucoup de bruit, ou bien une fréquence fondamentale d'un signal qui ne contient pas effectivement cette fondamentale, mais l'implique avec plusieurs de ses harmoniques. Note : La confusion est souvent faite entre l'auto-covariance et l'auto-corrélation. Ces deux notions généralisent les notions classiques de covariance ayant pour dimension la dimension de la variable élevée au carré et de coefficient de corrélation compris entre et . Les considérations qui suivent utilisent le langage le plus répandu chez les praticiens, sans division par la variance. Il existe d'autre part deux définitions fondamentalement différentes. À un processus stochastique discret ou continu, correspond une « auto-corrélation » statistique qui généralise la notion de covariance. Dans le cas d'un processus continu (en toute généralité complexe) , la fonction d'auto-corrélation statistique se définit comme :Dans le cas d'un signal stationnaire, on peut écrire :où est le décalage temporel et l'espérance mathématique se définit à partir de la densité de probabilité. À partir d'un signal , on peut définir l'auto-corrélation temporelle en remplaçant la moyenne d'ensemble par une moyenne temporelle : Lorsque le signal est considéré comme réalisation d'un processus stationnaire ergodique, l'auto-corrélation temporelle est identique à l'auto-corrélation statistique. Elle peut être utilisée pour calculer le contenu en fréquence du signal (voir densité spectrale). Dans certains problèmes, elle permet d'analyser le signal sans référence à son contenu en fréquences. En statistique, l'auto-corrélation d'une série temporelle discrète ou d'un processus est simplement la corrélation du processus par rapport à une version décalée dans le temps de lui-même.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.