L'autocorrélation est un outil mathématique souvent utilisé en traitement du signal. C'est la corrélation croisée d'un signal par lui-même.
L'autocorrélation permet de détecter des régularités, des profils répétés dans un signal comme un signal périodique perturbé par beaucoup de bruit, ou bien une fréquence fondamentale d'un signal qui ne contient pas effectivement cette fondamentale, mais l'implique avec plusieurs de ses harmoniques.
Note : La confusion est souvent faite entre l'auto-covariance et l'auto-corrélation. Ces deux notions généralisent les notions classiques de covariance ayant pour dimension la dimension de la variable élevée au carré et de coefficient de corrélation compris entre et . Les considérations qui suivent utilisent le langage le plus répandu chez les praticiens, sans division par la variance. Il existe d'autre part deux définitions fondamentalement différentes.
À un processus stochastique discret ou continu, correspond une « auto-corrélation » statistique qui généralise la notion de covariance. Dans le cas d'un processus continu (en toute généralité complexe) , la fonction d'auto-corrélation statistique se définit comme :Dans le cas d'un signal stationnaire, on peut écrire :où est le décalage temporel et l'espérance mathématique se définit à partir de la densité de probabilité.
À partir d'un signal , on peut définir l'auto-corrélation temporelle en remplaçant la moyenne d'ensemble par une moyenne temporelle : Lorsque le signal est considéré comme réalisation d'un processus stationnaire ergodique, l'auto-corrélation temporelle est identique à l'auto-corrélation statistique. Elle peut être utilisée pour calculer le contenu en fréquence du signal (voir densité spectrale). Dans certains problèmes, elle permet d'analyser le signal sans référence à son contenu en fréquences.
En statistique, l'auto-corrélation d'une série temporelle discrète ou d'un processus est simplement la corrélation du processus par rapport à une version décalée dans le temps de lui-même.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
thumb|Exemple de visualisation de données montrant une tendances à moyen et long terme au réchauffement, à partir des séries temporelles de températures par pays (ici regroupés par continents, du nord au sud) pour les années 1901 à 2018. Une série temporelle, ou série chronologique, est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. De telles suites de variables aléatoires peuvent être exprimées mathématiquement afin d'en analyser le comportement, généralement pour comprendre son évolution passée et pour en prévoir le comportement futur.
On définit la densité spectrale de puissance (DSP en abrégé, Power Spectral Density ou PSD en anglais) comme étant le carré du module de la transformée de Fourier, divisé par le temps d'intégration, (ou, plus rigoureusement, la limite quand tend vers l'infini de l'espérance mathématique du carré du module de la transformée de Fourier du signal - on parle alors de densité spectrale de puissance moyenne).
La corrélation croisée est parfois utilisée en statistique pour désigner la covariance des vecteurs aléatoires X et Y, afin de distinguer ce concept de la « covariance » d'un vecteur aléatoire, laquelle est comprise comme étant la matrice de covariance des coordonnées du vecteur. En traitement du signal, la corrélation croisée (aussi appelée covariance croisée) est la mesure de la similitude entre deux signaux.
The course provides an introduction to the use of path integral methods in atomistic simulations.
The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
Acquisition de concepts et compétences de base liées à la représentation numérique des données géographiques et à leur insertion dans des SIG. Apprentissage de processus d'analyse spatiale pour les in
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
We present FITCOV an approach for accurate estimation of the covariance of two-point correlation functions that requires fewer mocks than the standard mock-based covariance. This can be achieved by dividing a set of mocks into jackknife regions and fitting ...
In the current Dark Energy Spectroscopic Instrument (DESI) survey, emission line galaxies (ELGs) and luminous red galaxies (LRGs) are essential for mapping the dark matter distribution at < N(M)>. We measure the auto and cross correlation functions of ELGs ...
Quantifying irreversibility of a system using finite information constitutes a major challenge in stochastic thermodynamics. We introduce an observable that measures the time-reversal asymmetry between two states after a given time lag. Our central result ...