Publication

Piezoelectric properties of twinned ferroelectric perovskites with head-to-head and tail-to-tail domain walls

Nava Setter, Petr Ondrejkovic
2013
Journal paper
Abstract

Longitudinal piezoelectric coefficient of a twinned ferroelectric perovskite material with an array of partially compensated head-to-head and tail-to-tail 90-degree domain walls has been studied by phase-field simulations in the framework of the Ginzburg-Landau-Devonshire model of BaTiO3 ferroelectric. In particular, it is shown that the magnitude of the build-in extrinsic charge at the domain wall and the nanoscale domain size can both promote rotation of the static polarization vector within the body of adjacent domains. This polarization rotation drives the domain closer to an orthorhombic state, and the proximity to this ferroelectric-ferroelectric phase transition is directly responsible for the enhancement of the properties. Our simulations and the theory also suggest that the same system with nominally overcompensated charged walls may show a negative effective longitudinal piezoelectric coefficient. The obtained results can be used for quantitative estimates of piezoelectric properties of domain-engineered crystals.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.