Publication

A Fast Hadamard Transform for Signals with Sub-linear Sparsity

Résumé

A new iterative low complexity algorithm has been presented for computing the Walsh-Hadamard transform (WHT) of an N dimensional signal with a K-sparse WHT, where N is a power of two and K = O(N^α), scales sub- linearly in N for some 0 < α < 1. Assuming a random support model for the nonzero transform domain components, the algorithm reconstructs the WHT of the signal with a sample complexity O(K log2(N/K)), a computational complexity O(K log2(K) log2(N/K)) and with a very high probability asymptotically tending to 1. The approach is based on the subsampling (aliasing) property of the WHT, where by a carefully designed subsampling of the time domain signal, one can induce a suitable aliasing pattern in the transform domain. By treating the aliasing patterns as parity-check constraints and borrowing ideas from erasure correcting sparse-graph codes, the recovery of the nonzero spectral values has been formulated as a belief propagation (BP) algorithm (peeling decoding) over a sparse-graph code for the binary erasure channel (BEC). Tools from coding theory are used to analyze the asymptotic performance of the algorithm in the “very sparse” (α ∈ (0, 1/3]) and the “less sparse” regime (α ∈ (1/3,1).)

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.