Publication

Semantic Trajectories Modeling and Analysis

Abstract

Focus on movement data has increased as a consequence of the larger availability of such data due to current GPS, GSM, RFID, and sensors techniques. In parallel, interest in movement has shifted from raw movement data analysis to more application-oriented ways of analyzing segments of movement suitable for the specific purposes of the application. This trend has promoted semantically rich trajectories, rather than raw movement, as the core object of interest in mobility studies. This survey provides the definitions of the basic concepts about mobility data, an analysis of the issues in mobility datamanagement, and a survey of the approaches and techniques for: (i) constructing trajectories from movement tracks, (ii) enriching trajectories with semantic information to enable the desired interpretations of movements, and (iii) using data mining to analyze semantic trajectories and extract knowledge about their characteristics, in particular the behavioral patterns of the moving objects. Last but not least, the article surveys the new privacy issues that arise due to the semantic aspects of trajectories.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.