Publication

Outlier removal for improved source estimation in atmospheric inverse problems

Abstract

Estimation of the quantities of harmful substances emitted into the atmosphere is one of the main challenges in modern environmen- tal sciences. In most of the cases, this estimation requires solving a linear inverse problem. A key difficulty in evaluating the performance of any algorithm to solve this linear inverse problem is that the ground truth is typically unknown. In this paper we show that the noise encountered in this linear inverse problem is non-Gaussian. Next, we develop an algorithm to deal with the strong outliers present in the measurements. Finally, we test our approach on three different experiments: a simple synthetic experiment, a controlled real-world experiment, and real data from the Fukushima nuclear accident.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.