Publication

Parameter and uncertainty estimation for mechanistic, spatially explicit epidemiological models

Abstract

Epidemiological models can be a crucially important tool for decision-making during disease outbreaks. The range of possible applications spans from real-time forecasting and allocation of health-care resources to testing alterna- tive intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. Our spatially explicit, mechanistic models for cholera epidemics have been successfully applied to several epidemics including, the one that struck Haiti in late 2010 and is still ongoing. Calibration and parameter estimation of such models represents a major challenge because of properties unusual in traditional geoscientific domains such as hydrology. Firstly, the epidemiological data available might be subject to high uncertainties due to error-prone diagnosis as well as manual (and possibly incomplete) data collection. Sec- ondly, long-term time-series of epidemiological data are often unavailable. Finally, the spatially explicit character of the models requires the comparison of several time-series of model outputs with their real-world counterparts, which calls for an appropriate weighting scheme. It follows that the usual assumption of a homoscedastic Gaussian error distribution, used in combination with clas- sical calibration techniques based on Markov chain Monte Carlo algorithms, is likely to be violated, whereas the construction of an appropriate formal likelihood function seems close to impossible. Alternative calibration meth- ods, which allow for accurate estimation of total model uncertainty, particularly regarding the envisaged use of the models for decision-making, are thus needed. Here we present the most recent developments regarding methods for parameter and uncertainty estimation to be used with our mechanistic, spatially explicit models for cholera epidemics, based on informal measures of goodness of fit.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Maximum likelihood estimation
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.
Estimation theory
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An estimator attempts to approximate the unknown parameters using the measurements.
Epidemiology
Epidemiology is the study and analysis of the distribution (who, when, and where), patterns and determinants of health and disease conditions in a defined population. It is a cornerstone of public health, and shapes policy decisions and evidence-based practice by identifying risk factors for disease and targets for preventive healthcare. Epidemiologists help with study design, collection, and statistical analysis of data, amend interpretation and dissemination of results (including peer review and occasional systematic review).
Show more
Related publications (66)

Different health systems-Different mortality outcomes? Regional disparities in avoidable mortality across German-speaking Europe, 1992-2019

Mathias Lerch

Background: Evaluating the impact of health systems on premature mortality across different countries is a very challenging task, as it is hardly possible to disentangle it from the influence of contextual factors such as cultural differences. In this resp ...
PERGAMON-ELSEVIER SCIENCE LTD2023

VL4Pose: Active Learning Through Out-Of-Distribution Detection For Pose Estimation

Alexandre Massoud Alahi, Megh Hiren Shukla

Advances in computing have enabled widespread access to pose estimation, creating new sources of data streams. Unlike mock set-ups for data collection, tapping into these data streams through on-device active learning allows us to directly sample from the ...
BMVA Press2022

Fast Bayesian estimation of spatial count data models

Prateek Bansal

Spatial count data models are used to explain and predict the frequency of phenomena such as traffic accidents in geographically distinct entities such as census tracts or road segments. These models are typically estimated using Bayesian Markov chain Mont ...
2021
Show more
Related MOOCs (18)
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.