Concept

Maximum de vraisemblance

Résumé
En statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Exemple Soient neuf tirages aléatoires x1, …, x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés. On souhaite modéliser ces valeurs par une loi normale. On va alors expliquer intuitivement la notion de vraisemblance, puis expliquer comment trouver les deux paramètres de la loi normale à savoir ici l'espérance μ (la moyenne) et l'écart type σ. Lois normales de même écart type vignette|300px|Deux fonctions de densité avec deux espérances différentes : une courbe noire et une courbe bleue. Prenons deux lois modèles de même écart type σ mais ayant une esp
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement