Résumé
En statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés. On souhaite modéliser ces valeurs par une loi normale. On va alors expliquer intuitivement la notion de vraisemblance, puis expliquer comment trouver les deux paramètres de la loi normale à savoir ici l'espérance μ (la moyenne) et l'écart type σ. vignette|300px|Deux fonctions de densité avec deux espérances différentes : une courbe noire et une courbe bleue. Prenons deux lois modèles de même écart type σ mais ayant une espérance μ différente. Pour chacun des cas, on détermine les hauteurs hi correspondant à la valeur de la fonction de densité en xi. La vraisemblance L est alors définie comme valant c'est-à-dire comme le produit des hauteurs. Dans le cas de la courbe bleue à droite, la fonction de densité est maximale à l'endroit où il y a le plus de valeurs — la zone est signalée par une accolade. Donc, la vraisemblance est plus importante pour la courbe bleue que pour la courbe noire. De manière générale, on doit avoir une densité de valeurs xi importante là où la fonction de densité est importante ; le maximum de vraisemblance est donc pertinent pour sélectionner le paramètre position, lorsqu'il a un sens, de la loi modèle. vignette|450px|Trois fonctions de densité de trois lois normales centrées en 0, avec écarts types respectivement grand (à gauche), moyen (au milieu) et petit (à droite). Prenons maintenant trois lois normales modèle toutes les trois avec la « bonne » espérance, mais ayant des écarts types différents.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.