Publication

Temperature and oxygen-concentration dependence of singlet oxygen production by RuPhen as induced by quasi-continuous excitation

Abstract

Advanced Search Home > Journals > Photochemical & Photobi... > Temperature and oxygen-... For Authors & Referees | For Librarians | For Members Journal cover: Photochemical & Photobiological Sciences Photochemical & Photobiological Sciences Issue 12, 2014 A society-owned journal publishing high quality research on all aspects of photochemistry and photobiology. Impact Factor 2.939 12 Issues per Year Indexed in Medline Journal Home Previous Article | Next Article Paper Temperature and oxygen-concentration dependence of singlet oxygen production by RuPhen as induced by quasi-continuous excitation Jaroslav Varchola,a Veronika Huntosova,b Daniel Jancura,ab Georges Wagnières,c Pavol Miskovskyab and Gregor Bánó*ab Show Affiliations Photochem. Photobiol. Sci., 2014,13, 1781-1787

DOI: 10.1039/C4PP00202D Received 06 Jun 2014, Accepted 02 Oct 2014 First published online 06 Oct 2014 | | Share on citeulike | Share on facebook | Share on twitter | | More

PDF Rich HTML

Send PDF to Kindle

Download Citation Help Request Permissions

Abstract Cited by Related Content

Assessment of partial pressure of oxygen (pO2) by luminescence lifetime measurements of ruthenium coordination complexes has been studied intensively during the last few decades. RuPhen (dichlorotris(1,10-phenanthroline) ruthenium(II) hydrate) is a water soluble molecule that has been tested previously for in vivo pO2 detection. In this work we intended to shed light on the production of singlet oxygen by RuPhen. The quantum yield of singlet oxygen production by RuPhen dissolved in 0.9% aqueous NaCl solution (pH = 6) was measured at physiological temperatures (285–310 K) and various concentrations of molecular oxygen. In order to minimize the bleaching of RuPhen, the samples were excited with low power (

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.