Publication

Comparison of force-based and displacement-based design approaches for RC coupled walls in New Zealand

Katrin Beyer
2014
Journal paper
Abstract

Reinforced concrete coupled walls are a common lateral load resisting system used in multi-storey buildings. The effect of the coupling beams can improve seismic performance, but at the same time adds complexity to the design procedure. A case study coupled wall building is designed using Force-Based Design (FBD) and Direct Displacement-Based Design (DDBD) and in the case of the latter a step by step design example is provided. Distributed plasticity fibre-section beam element numerical models of the coupled walls are developed in which coupling beams are represented by diagonal truss elements and experimental results are used to confirm that this approach can provide a good representation of hysteretic behaviour. The accuracy of the two different design methods is then assessed by comparing the design predictions to the results of non-linear time-history analyses. It is shown that the DDBD approach gives an accurate prediction of inter-storey drift response. The FBD approach, in accordance with NZS1170.5 and NZS3101, is shown to include an impractical procedure for the assignment of coupling beam strengths and code equations for the calculation of coupling beam characteristics appear to include errors. Finally, the work highlights differences between the P-delta considerations that are made in FBD and DDBD, and shows that the code results are very sensitive to the way in which P-delta effects are accounted for.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Earthquake engineering
Earthquake engineering is an interdisciplinary branch of engineering that designs and analyzes structures, such as buildings and bridges, with earthquakes in mind. Its overall goal is to make such structures more resistant to earthquakes. An earthquake (or seismic) engineer aims to construct structures that will not be damaged in minor shaking and will avoid serious damage or collapse in a major earthquake. A properly engineered structure does not necessarily have to be extremely strong or expensive.
Time complexity
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.
P (complexity)
In computational complexity theory, P, also known as PTIME or DTIME(nO(1)), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time. Cobham's thesis holds that P is the class of computational problems that are "efficiently solvable" or "tractable". This is inexact: in practice, some problems not known to be in P have practical solutions, and some that are in P do not, but this is a useful rule of thumb.
Show more
Related publications (32)

The Role of the Composite Floor System and Framing Action in the Seismic Performance of Composite Steel Moment-Resisting Frames

Hammad El Jisr

With the advent of performance-based earthquake engineering (PBEE), the need for reliable prediction of earthquake-induced collapse of structures is essential. Despite the significant progress that has been made towards this goal, there are several hurdles ...
EPFL2022

Seismic performance of structures incorporating seismic isolation with lead-rubber bearings

Elias Merhi

The emergence of new high-performance materials and equipment, as well as advancements in numerical calculation techniques, have allowed base isolation to take its place among the strategies used by engineers in earthquake resistant design. Despite the eno ...
2022

Fast and Space Efficient Spectral Sparsification in Dynamic Streams

Mikhail Kapralov, Jakab Tardos, Navid Nouri, Aidasadat Mousavifar

In this paper, we resolve the complexity problem of spectral graph sparcification in dynamic streams up to polylogarithmic factors. Using a linear sketch we design a streaming algorithm that uses (O) over tilde (n) space, and with high probability, recover ...
ASSOC COMPUTING MACHINERY2020
Show more