Publication

Chlorination of Iodide-Containing Waters in the Presence of CuO: Formation of Periodate

Urs von Gunten
2014
Journal paper
Abstract

It has been shown previously that the disproportionation of halogen-containing oxidants (e.g., HOCl, HOBr, and ClO2) is enhanced by a CuO-catalyzed process. In this study, the transformation of iodine during chlorination in the presence of CuO was investigated. There is no significant enhancement of the disproportionation of hypoiodous acid (HOI) in the presence of CuO. The formation rate of iodate (IO3(-)) in the CuO-HOCl-I(-) system significantly increased when compared to homogeneous solutions, which was ascribed to the activation of HOCl by CuO enhancing its reactivity toward HOI. In this reaction system, iodate formation rates increase with increasing CuO (0-0.5 g L(-1)) and bromide (0-2 μM) doses and with decreasing pH (9.6-6.6). Iodate does not adsorb to the CuO surfaces used in this study. Nevertheless, iodate concentrations decreased after a maximum was reached in the CuO-HOCl-I(-)(-Br(-)) systems. Similarly, the iodate concentrations decrease as a function of time in the CuO-HOCl-IO3(-) or CuO-HOBr-IO3(-) system, and the rates increase with decreasing pH (9.6-6.6) due to the enhanced reactivity of HOCl or HOBr in the presence of CuO. It could be demonstrated that iodate is oxidized to periodate by a CuO-activated hypohalous acid, which is adsorbed on the CuO surface. No periodate could be measured in filtered solutions because it was mainly adsorbed to CuO. The adsorbed periodate was identified by scanning electron microscopy plus energy dispersive spectroscopy and X-ray photoelectron spectroscopy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Iodine
Iodine is a chemical element with the symbol I and atomic number 53. The heaviest of the stable halogens, it exists as a semi-lustrous, non-metallic solid at standard conditions that melts to form a deep violet liquid at , and boils to a violet gas at . The element was discovered by the French chemist Bernard Courtois in 1811 and was named two years later by Joseph Louis Gay-Lussac, after the Ancient Greek Ιώδης 'violet-coloured'. Iodine occurs in many oxidation states, including iodide (I−), iodate (IO3-), and the various periodate anions.
Iodate
An iodate is the polyatomic anion with the formula . It is the most common form of iodine in nature, as it comprises the major iodine-containing ores. Iodate salts are often colorless. They are the salts of iodic acid. Iodate is pyramidal in structure. The O–I–O angles range from 97° to 105°, somewhat smaller than the O–Cl–O angles in chlorate. Iodate is one of several oxyanions of iodine, and has an oxidation number of +5. It participates in several redox reactions, such as the iodine clock reaction.
Iodic acid
Iodic acid is a white water-soluble solid with the chemical formula . Its robustness contrasts with the instability of chloric acid and bromic acid. Iodic acid features iodine in the oxidation state +5 and is one of the most stable oxo-acids of the halogens. When heated, samples dehydrate to give iodine pentoxide. On further heating, the iodine pentoxide further decomposes, giving a mix of iodine, oxygen and lower oxides of iodine.
Show more
Related publications (37)
Related MOOCs (18)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.