Publication

Homonuclear Decoupling of H-1 Dipolar Interactions in Solids by means of Heteronuclear Recoupling

David Lyndon Emsley
2014
Journal paper
Abstract

Line narrowing has been traditionally achieved in solid-state H-1 NMR spectroscopy by applying pulse sequences that combine multiple-pulse operations with magic-angle spinning (MAS), to effectively average out the dipoledipole homonuclear Hamiltonian. The present study explores a new alternative that departs from the usual concept of directly acting on the strongly coupled spins with radiofrequency pulses; instead, we seek to achieve a net homonuclear dipolar decoupling in solids by exploring the reintroduction of MAS-averaged heteronuclear dipolar couplings between the H-1 nuclei and directly bonded C-13 or N-15 nuclei. This recouplinganti-recoupling (RaR) scheme thus relies on the recoupling of the dipolar interaction with heteronuclear spins, which, under fast MAS, will exceed the strength and will not commute with the homonuclear (HH)-H-1-H-1 coupling one is intending to average out. Subsequent removal (antiRecoupling) of these heteronuclear interactions can lead to narrowed H-1 resonances, without ever pulsing on the aforementioned channel. The line-narrowing properties of RaR are illustrated with numerical simulations and with experiments on model organic solids.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (25)
Solid-state nuclear magnetic resonance
Solid-state NMR (ssNMR) spectroscopy is a technique for characterizing atomic level structure in solid materials e.g. powders, single crystals and amorphous samples and tissues using nuclear magnetic resonance (NMR) spectroscopy. The anisotropic part of many spin interactions are present in solid-state NMR, unlike in solution-state NMR where rapid tumbling motion averages out many of the spin interactions.
J-coupling
In nuclear chemistry and nuclear physics, J-couplings (also called spin-spin coupling or indirect dipole–dipole coupling) are mediated through chemical bonds connecting two spins. It is an indirect interaction between two nuclear spins that arises from hyperfine interactions between the nuclei and local electrons. In NMR spectroscopy, J-coupling contains information about relative bond distances and angles. Most importantly, J-coupling provides information on the connectivity of chemical bonds.
Nuclear magnetic resonance
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca.
Show more
Related publications (37)

Solid-state NMR spectroscopy

David Lyndon Emsley

Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method to determine the chemical structure, 3D structure and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR spectroscopy as applied to the ...
SPRINGERNATURE2021

New Approaches to NMR Crystallography

Federico Maria Paruzzo

The first full protocol for nuclear magnetic resonance (NMR) crystallography (NMRX) using chemical shifts was developed a decade ago, and it combines experimental isotropic chemical shifts with crystal structure prediction (CSP) and with the calculation of ...
EPFL2019

Nuclear overhauser spectroscopy of chiral CHD methylene groups

Geoffrey Bodenhausen, Fabien Ferrage

Nuclear magnetic resonance spectroscopy (NMR) can provide a great deal of information about structure and dynamics of biomolecules. The quality of an NMR structure strongly depends on the number of experimental observables and on their accurate conversion ...
Springer Verlag2016
Show more
Related MOOCs (5)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.