Concept

Résonance magnétique nucléaire

vignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation. L'énergie mise en jeu lors de ce phénomène de résonance correspond à une fréquence très précise, dépendant du champ magnétique et d'autres facteurs moléculaires. Ce phénomène permet donc l'observation des propriétés quantiques magnétiques des noyaux dans les phases gaz, liquide ou solide. Seuls les atomes dont les noyaux possèdent un moment magnétique donnent lieu au phénomène de résonance. Le phénomène RMN est exploité par la spectroscopie de résonance magnétique nucléaire (spectroscopie RMN), une technique utilisée par plusieurs disciplines : en physique et chimie (chimie organique, chimie inorganique, science des matériaux...) ou en biochimie (structure de molécules). Une extension sans doute plus connue dans le grand public est l' (IRM) utilisée en médecine, mais également en chimie. Récemment, le phénomène RMN a été utilisé dans la technique de microscopie à force de résonance magnétique (MFRM) pour obtenir des images à l'échelle nanométrique grâce à une détection mécanique. Cette technique combine les principes de l'imagerie par résonance magnétique et de la microscopie à force atomique (AFM). Le phénomène RMN concerne le spin des noyaux atomiques. Un phénomène analogue existe aussi pour les électrons (à condition qu'ils ne soient pas appariés), c'est la résonance de spin électronique (ESR) aussi appelée résonance paramagnétique électronique (RPE). Il existe enfin un phénomène proche, mais qui se produit en l'absence de champ magnétique pour certains noyaux dit « quadripolaires » de spin supérieur à 1⁄2, la résonance quadripolaire nucléaire (RQN).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Proximité ontologique
Cours associés (18)
BIO-315: Structural biology
The main focus of this course is on the molecular interactions defining the structure, dynamics and function of biological systems. The principal experimental and computational techniques used in stru
MICRO-602: Micro-magnetic field sensors and actuators
The course provides the basis to understand the physics, the key performance, and the research and industrial applications of magnetic sensors and actuators. Together with a detailed introduction to m
MSE-468: Atomistic and quantum simulations of materials
Theory and application of quantum simulations to model, understand, and predict the properties of real materials.
Afficher plus
Concepts associés (41)
Spin–spin relaxation
In physics, the spin–spin relaxation is the mechanism by which Mxy, the transverse component of the magnetization vector, exponentially decays towards its equilibrium value in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). It is characterized by the spin–spin relaxation time, known as T2, a time constant characterizing the signal decay. It is named in contrast to T1, the spin–lattice relaxation time.
Spin–lattice relaxation
During nuclear magnetic resonance observations, spin–lattice relaxation is the mechanism by which the longitudinal component of the total nuclear magnetic moment vector (parallel to the constant magnetic field) exponentially relaxes from a higher energy, non-equilibrium state to thermodynamic equilibrium with its surroundings (the "lattice"). It is characterized by the spin–lattice relaxation time, a time constant known as T1.
Rapport gyromagnétique
En physique, le rapport gyromagnétique est le rapport entre le moment magnétique et le moment cinétique d'une particule. Son unité dans le Système international est le coulomb par kilogramme (C⋅kg). En pratique, on donne souvent , exprimé en mégahertz par tesla (MHz⋅T), essentiel en RMN. Tout système libre possédant un rapport gyromagnétique constant, (un atome d'hydrogène par exemple), placé dans un champ magnétique non aligné avec le moment magnétique du système, sera entraîné dans un mouvement de précession de Larmor à la fréquence telle que : C'est pourquoi les valeurs de sont plus souvent données que .
Afficher plus
MOOCs associés (32)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.