The reaction of [(dropSiO)Zr(CH(2)tBu)(3)] with H-2 at 150 degreesC leads to the hydrogenolysis of the zirconium-carbon bonds to form a very reactive hydride intermediate(s), which further reacts with the surrounding siloxane ligands present at the surface of this support to form mainly two different zirconium hydrides: [(dropSiO)(3)Zr-H] (1a, 70-80%) and [(dropSiO)(2)ZrH2] (1b, 20-30%) along with silicon hydrides, [(dropSiO)(3)SiH] and [(dropSiO)(2)SiH2]. Their structural identities were identified by H-1 DQ solid-state NMR spectroscopy as well as reactivity studies. These two species react with CO2 and N2O to give, respectively, the corresponding formate [(dropSiO)(4-x)Zr(O-C(=O)H)(x)] (2) and hydroxide complexes [(dropSiO)(4-x)Zr(OH)(x)] (x = 1 or 2 for 3a and 3b, respectively) as major surface complexes.
Nicolai Cramer, Pavel Alexandrovich Donets, John Henry Reed, Solène Florie Miaskiewicz
Ludger Weber, Caroline Hain, Giovanni Bianchi, Alberto Ortona, Manoj Kondibhau Naikade