Publication

Energetic Macroscopic Representation of A Linear Reciprocating Compressor Model

Abstract

This article introduces the energetic macroscopic representation (EMR) as approach for the dynamic nonlinear modeling of a reciprocating air compressor. EMR has been introduced recently for research development in complex electromechanical systems and is based on action reaction principle. The compressor is divided into simple subsystems including: driver mechanism, cylinder head, valves and reservoir. Models are developed for different subsystems, which are assembled into a final overall system EMR. Since the final application of this model will be an isothermal Compressed Air Energy Storage system (CAES), special attention has been paid to transient heat transfer considering the thermal resistor and capacitor effect of the walls adopting a thermoelectric analogy. The results were verified both using Finite Element method and experiment. The EMR modeling presented here allows the modeling of multi-physics components and highlights the interactions of the electromechanical, heat transfer and fluid mechanics phenomena that occur simultaneously in an air compressor.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.